quarta-feira, 15 de julho de 2009

borrelia-de-lyme.jpg

Esta é a primeira imagem tridimensional da bactéria causadora da borreliose de Lyme, uma erupção cutânea transmitida pela picada de carrapatos. Mas, além de problemas dermatológicos, esta bactéria está também envolvida em inflamações nas juntas e no sistema nervoso.

A imagem inédita foi possível graças a um microscópio de última geração, chamado tomógrafo crioeletrônico. Ele permite a captura de imagens em três dimensões. A pesquisa foi desenvolvida pela equipe do professor Reinhard Wallich, da Universidade de Heidelberg, na Alemanha.

O microscópio 3D dispensa o pré-tratamento químico da amostra biológica, que geralmente modifica sua estrutura. Para garantir a manutenção no melhor nível possível de suas condições internas, a amostra deve ser congelada instantaneamente, mergulhada em um ambiente criogênico.

As Borrelias são espiroquetas, como as bactérias causadoras da sífilis. Os cientistas acreditam que sua capacidade de movimentação - graças ao seu formato, à sua flexibilidade e à presença de flagelos complexos - é a grande responsável pela alta capacidade dessas bactérias em evadir-se do sistema imunológico humano. Com as novas imagens, os pesquisadores esperam ter novas informações a seu respeito e verificar essas hipóteses.


Função do Sistema Nervoso

O sistema nervoso é responsável pelo ajustamento do organismo ao ambiente. Sua função é perceber e identificar as condições ambientais externas, bem como as condições reinantes dentro do próprio corpo e elaborar respostas que adaptem a essas condições.

A unidade básica do sistema nervoso é a célula nervosa, denominada neurônio, que é uma célula extremamente estimulável; é capaz de perceber as mínimas variações que ocorrem em torno de si, reagindo com uma alteração elétrica que percorre sua membrana. Essa alteração elétrica é o impulso nervoso.

As células nervosas estabelecem conexões entre si de tal maneira que um neurônio pode transmitir a outros os estímulos recebidos do ambiente, gerando uma reação em cadeia.

Neurônios: células nervosas

Um neurônio típico apresenta três partes distintas: corpo celular, dentritos e axônio.

No corpo celular, a parte mais volumosa da célula nervosa, se localiza o núcleo e a maioria das estruturas citoplasmáticas.

Os dentritos (do grego dendron, árvore) são prolongamentos finos e geralmente ramificados que conduzem os estímulos captados do ambiente ou de outras células em direção ao corpo celular.

O axônio é um prolongamento fino, geralmente mais longo que os dentritos, cuja função é transmitir para outras células os impulsos nervosos provenientes do corpo celular.

Os corpos celulares dos neurônios estão concentrados no sistema nervoso central e também em pequenas estruturas globosas espalhadas pelo corpo, os gânglios nervosos. Os dentritos e o axônio, genericamente chamados fibras nervosas, estendem-se por todo o corpo, conectando os corpos celulares dos neurônios entre si e às células sensoriais, musculares e glandulares.

Células Glia

Além dos neurônios, o sistema nervoso apresenta-se constituído pelas células glia, ou células gliais, cuja função é dar sustentação aos neurônios e auxiliar o seu funcionamento. As células da glia constituem cerca de metade do volume do nosso encéfalo. Há diversos tipos de células gliais. Os astrócitos, por exemplo, dispõem-se ao longo dos capilares sanguíneos do encéfalo, controlando a passagem de substâncias do sangue para as células do sistema nervoso. Os oligodendrócitos e as células de Schwann enrolam-se sobre os axônios de certos neurônios, formando envoltórios isolantes.

Impulso Nervoso

A despolarização e a repolarização de um neurônio ocorrem devido as modificações na permeabilidade da membrana plasmática. Em um primeiro instante, abrem-se "portas de passagem" de Na+, permitindo a entrada de grande quantidade desses íons na célula. Com isso, aumenta a quantidade relativa de carga positiva na região interna na membrana, provocando sua despolarização. Em seguida abrem-se as "portas de passagem" de K+, permitindo a saída de grande quantidade desses íons. Com isso, o interior da membrana volta a ficar com excesso de cargas negativas (repolarização). A despolarização em uma região da membrana dura apenas cerca de 1,5 milésimo de segundo (ms).

O estímulo provoca, assim, uma onda de despolarizações e repolarizações que se propaga ao longo da membrana plasmática do neurônio. Essa onda de propagação é o impulso nervoso, que se propaga em um único sentido na fibra nervosa. Dentritos sempre conduzem o impulso em direção ao corpo celular, por isso diz que o impulso nervoso no dentrito é celulípeto. O axônio por sua vez, conduz o impulso em direção às suas extremidades, isto é, para longe do corpo celular; por isso diz-se que o impulso nervoso no axônio é celulífugo.

A velocidade de propagação do impulso nervoso na membrana de um neurônio varia entre 10cm/s e 1m/s. A propagação rápida dos impulsos nervosos é garantida pela presença da bainha de mielina que recobre as fibras nervosas. A bainha de mielina é constituída por camadas concêntricas de membranas plasmáticas de células da glia, principalmente células de Schwann. Entre as células gliais que envolvem o axônio existem pequenos espaços, os nódulos de Ranvier, onde a membrana do neurônio fica exposta.

Nas fibras nervosas mielinizadas, o impulso nervoso, em vez de se propagar continuamente pela membrana do neurônio, pula diretamente de um nódulo de Ranvier para o outro. Nesses neurônios mielinizados, a velocidade de propagação do impulso pode atingir velocidades da ordem de 200m/s (ou 720km/h ).

Sistema Nervoso
Divisão Partes Funções gerais
Sistema nervoso central (SNC) Encéfalo
Medula espinal
Processamento e integração de informações
Sistema nervoso periférico (SNP) Nervos
Gânglios
Condução de informações entre órgãos receptores de estímulos, o SNC e órgãos efetuadores (músculos, glândulas...)

Sistema nervoso.

Sinapses: transmissão do impulso nervoso entre células

Um impulso é transmitido de uma célula a outra através das sinapses (do grego synapsis, ação de juntar). A sinapse é uma região de contato muito próximo entre a extremidade do axônio de um neurônio e a superfície de outras células. Estas células podem ser tanto outros neurônios como células sensoriais, musculares ou glandulares.

As terminações de um axônio podem estabelecer muitas sinapses simultâneas.

Na maioria das sinapses nervosas, as membranas das células que fazem sinapses estão muito próximas, mas não se tocam. Há um pequeno espaço entre as membranas celulares (o espaço sináptico ou fenda sináptica).

Quando os impulsos nervosos atingem as extremidades do axônio da célula pré-sináptica, ocorre liberação, nos espaços sinápticos, de substâncias químicas denominadas neurotransmissores ou mediadores químicos, que tem a capacidade de se combinar com receptores presentes na membrana das célula pós-sináptica, desencadeando o impulso nervoso. Esse tipo de sinapse, por envolver a participação de mediadores químicos, é chamado sinapse química.

Os cientistas já identificaram mais de dez substâncias que atuam como neurotransmissores, como a acetilcolina, a adrenalina (ou epinefrina), a noradrenalina (ou norepinefrina), a dopamina e a serotonina.

Impulso Nervoso

Impulso nervoso.

Sinapses Neuromusculares

A ligação entre as terminações axônicas e as células musculares é chamada sinapse neuromuscular e nela ocorre liberação da substância neurotransmissora acetilcolina que estimula a contração muscular.

Sinapses Elétricas

Em alguns tipos de neurônios, o potencial de ação se propaga diretamente do neurônio pré-sináptico para o pós-sináptico, sem intermediação de neurotransmissores. As sinapses elétricas ocorrem no sistema nervoso central, atuando na sincronização de certos movimentos rápidos.

Leia também

Publique Artigos e Resumos

Quer publicar seu texto no WebCiencia.com? Envie artigos ou resumos para contato.webciencia@gmail.com e seu trabalho aparecerá em nosso site para milhares de pessoas lerem. Inclua seu nome completo e algo sobre você!

Coelenterata

Membros do filo dos celenterados, tais como águas-vivas e hidras, têm um sistema nervoso simples intitulado rede neural. Ela é formada por neurônios, ligados por sinapses ou conexões celulares. A rede neural é centralizada ao redor da boca, mas não há um agrupamento anatômico de neurônios. Algumas águas-vivas possuem neurônios sensoriais conhecidos como rhopalia, com os quais podem perceber luz, movimento, ou gravidade.

[editar] Platelmintos e nematóides

Planárias, um tipo de platelminto, possuem uma corda nervosa dupla que percorre todo o comprimento do corpo e se funde com a cauda. Estas cordas nervosas são conectadas por nervos transversais, como os degraus de uma escada. Estes nervos ajudam a coordenar os dois lados do animal. Dois grandes gânglios na extremidade da cabeça funcionam de modo semelhante a um cérebro simplificado. Fotoreceptores nos ocelos destes animais provêem informação sensorial sobre luz e escuridão. Porém, os ocelos não são capazes de formar imagens.Os platelmintos foram os primeiros animais na escala evolutiva a apresentarem um processo de cefalização. A partir dos platelmintos até os equinodermos, o sistema nervoso é ganglionar ventral. Obs.: A "centralização" do sistema nervoso dos platelmintos representa um avanço em relação aos cnidários que têm uma rede nervosa difusa,sem nenhum órgão integrador das funções nervosas.

Artrópodes, tais como insetos e crustáceos, têm um sistema nervoso constituído de uma série de gânglios conectados por uma corda nervosa ventral feita de conectores paralelos que correm ao longo da barriga. Tipicamente, cada segmento do corpo possui um gânglio de cada lado, embora alguns deles se fundam para formar o cérebro e outros grandes gânglios.[1]

O segmento da cabeça contém o cérebro, também conhecido como gânglio supraesofágico. No sistema nervoso dos insetos, o cérebro é anatomicamente dividido em protocérebro, deutocérebro e tritocérebro. Imediatamente atrás do cérebro está o gânglio supraesofágico que controla as mandíbulas. Muitos artrópodes possuem órgãos sensoriais bem desenvolvidos, incluindo olhos compostos para visão e antenas para olfato e percepção de feromônios. A informação sensorial destes órgãos é processada pelo cérebro.

[editar] Mollusca

A maioria dos Moluscos, tais como Bivalves e lesmas, têm vários grupos de neurônios intercomunicantes chamados gânglios. O sistema nervoso da lebre-do-mar (Aplysia) tem sido utilizado extensamente em experimentos de neurociência por causa de sua simplicidade e capacidade de aprender associações simples.

Os cefalópodes, tais como lulas e polvos, possuem cérebros relativamente complexos. Estes animais também apresentam olhos sofisticados. Como em todos os invertebrados, os axônios dos cefalópodes carecem de mielina, o isolante que permite reação rápida nos vertebrados. Para obter uma velocidade de condução rápida o bastante para controlar músculos em tentáculos distantes, os axônios dos cefalópodes precisam ter um diâmetro avantajado nas grandes espécies de cefalópodes. Por este motivo, os axônios da lula gigante são usados por neurocientistas para trabalhar as propriedades básicas da ação potencial.

[editar] Vertebrados

Organização do sistema nervoso dos vertebrados
Periférico Somático
Autônomo Simpático
Parassimpático
Entérico
Central / Principal

O sistema nervoso dos animais vertebrados são frequentemente divididos em Sistema nervoso central (SNC) e Sistema nervoso periférico (SNP). O SNC consiste do encéfalo e da medula espinhal. O SNP consiste de todos os outros neurônios que não estão no SNC. A maioria do que comumente se denomina nervos (que são realmente os apêndices dos axônios de células nervosas) são considerados como constituintes do SNP. O sistema nervoso periférico é dividido em sistema nervoso somático e sistema nervoso autônomo.

O sistema nervoso somático é o responsável pela coordenação dos movimentos do corpo e também por receber estímulos externos. Este é o sistema que regula as atividades que estão sob controle consciente.

O sistema nervoso autónomo é dividido em sistema nervoso simpático, sistema nervoso parassimpático e sistema nervoso entérico. O sistema nervoso simpático responde ao perigo iminente ou stress, e é responsável pelo incremento do batimento cardíaco e da pressão arterial, entre outras mudanças fisiológicas, juntamente com a sensação de excitação que se sente devido ao incremento de adrenalina no sistema. O sistema nervoso parassimpático, por outro lado, torna-se evidente quando a pessoa está descansando e sente-se relaxada, e é responsável por coisas tais como a constrição pupilar, a redução dos batimentos cardíacos, a dilatação dos vasos sangüíneos e a estimulação dos sistemas digestivo e genitourinário. O papel do sistema nervoso entérico é gerenciar todos os aspectos da digestão, do esôfago ao estômago, intestino delgado e cólon.


http://www.brasilescola.com/upload/e/sistema%20endocrino.jpg
http://www.uff.br/fisiovet/imagens/sistema_nervoso_13.JPG

quarta-feira, 6 de maio de 2009